Apprentissage statistique - E-book - Multi-format

Gérard Dreyfus

Note moyenne 
Gérard Dreyfus - Apprentissage statistique.
L'apprentissage statistique permet la mise au point de modèles de données et de processus lorsque la formalisation de règles explicites serait impossible :... Lire la suite
0,00 € E-book - Multi-format
Vous pouvez lire cet ebook sur les supports de lecture suivants :
Bientôt disponible
Recevez un email dès que l'ouvrage est disponible

Résumé

L'apprentissage statistique permet la mise au point de modèles de données et de processus lorsque la formalisation de règles explicites serait impossible : reconnaissance de formes ou de signaux, prévision, fouille de données, prise de décision en environnement complexe et évolutif. Ses applications sont multiples dans le monde de la production industrielle (aide à la conception de produits, maintenance préventive, développement de capteurs virtuels, robotique, planification d'expériences...), dans le domaine de la biologie et de la santé (aide à la découverte de médicaments, aide au diagnostic, bio-informatique...), en télécommunications, en marketing et finance, et dans bien d'autres domaines. Sans omettre de rappeler les fondements théoriques de l'apprentissage statistique, cet ouvrage offre de solides bases méthodologiques à tout ingénieur ou chercheur soucieux d'exploiter ses données.
Il en présente les algorithmes les plus couramment utilisés - réseaux de neurones, cartes topologiques, machines à vecteurs supports, modèles de Markov cachés - à l'aide d'exemples et d'études de cas industriels, financiers ou bancaires. Cet ouvrage est la mise à jour du livre "Réseaux de neurones - Méthodologie et applications". À qui s'adresse ce livre ? - Aux ingénieurs, chercheurs et décideurs ayant à résoudre des problèmes de modélisation, de reconnaissance, de prévision, de commande, etc. - Aux étudiants et élèves ingénieurs des disciplines scientifiques et économiques, et à leurs enseignants. Sur le CD-Rom offert avec ce livre Cinq exemples de modèles avec données et codes source.
Version d'évaluation (6 semaines) de Neuro One 6.10.7 pour Windows NT4, 2000, 2003 et XP : un outil dédié convivial pour la création de modèles de réseaux de neurones. Un compilateur C pour MS-Windows. Bibliothèque non linéaire MonaEx70.dll, niveau 0. Configuration minimale requise : PC avec processeur Pentium 2 (ou équivalent) - MS-Windows 98/NT, 2000 ou XP - Fréquence supérieure à 100 MHz - 25 Mo d'espace disque disponible - 64 Mo de RAM.

Caractéristiques

  • Date de parution
    07/07/2011
  • Editeur
  • Collection
  • ISBN
    978-2-212-04298-6
  • EAN
    9782212042986
  • Format
    Multi-format
  • Nb. de pages
    450 pages
  • Caractéristiques du format Multi-format
    • Pages
      450
  • Caractéristiques du format PDF
    • Protection num.
      pas de protection

Avis libraires et clients

Avis audio

Écoutez ce qu'en disent nos libraires !

À propos de l'auteur

Biographie de Gérard Dreyfus

Gérard Dreyfus dirige le laboratoire d'électronique de l'École supérieure de physique et de chimie industrielles de la ville de Paris (ESPCI) où il enseigne notamment les méthodes de modélisation par apprentissage. Il dispense des formations continues à l'usage des ingénieurs dans ce domaine. Jean-Marc Martinez est expert senior et enseignant-chercheur au Commissariat à l'Énergie Atomique dans le domaine de l'apprentissage statistique et de la modélisation des incertitudes en simulation numérique.
Il développe et applique ces méthodes au CEA et les enseigne dans diverses universités et écoles. Manuel Samuelides dirige le département de mathématiques appliquées de l'ENSAE (Supaéro); il y enseigne les probabilités, l'optimisation et les techniques probabilistes de l'apprentissage. Il effectue des recherches au département de traitement de l'information et modélisation de l'ONERA. Mirta B.
Gordon, physicienne, directrice de recherches au CNRS, est responsable de l'équipe "Apprentissage : modèles et algorithmes" (AMA) au sein du laboratoire TIMC-IMAG (Grenoble). Elle effectue des recherches sur la modélisation des systèmes complexes adaptatifs, et sur la théorie et les algorithmes d'apprentissage. Elle enseigne ces sujets dans différentes écoles doctorales. Fouad Badran, professeur au CNAM, y enseigne les réseaux de neurones. Sylvie Thiria, professeur à l'université de Versailles Saint-Quentin-en-Yvelines, effectue des recherches sur la modélisation neuronale et sur ses applications, notamment à la géophysique, au laboratoire d'océanographie dynamique et de climatologie (LODYC).

Souvent acheté ensemble

Vous aimerez aussi

Derniers produits consultés

Apprentissage statistique est également présent dans les rayons